Tetrahedron Vol. 39, No. 3, pp. 449 to 453, 1983. Printed in Great Britain

GIBBERELLINS-LXXXIX¹

SYNTHESIS OF GIBBERELLIN A55 AND A57 AS WELL AS 1-OXYGENATED GIBBERELLIN A5 AND A20 ANALOGUES—A NEW PRINCIPLE FOR THE REGIOSELECTIVE TRANSPOSITION OF AN ALLYLIC ALCOHOL FUNCTION²

B. VOIGT and G. ADAM*

Institute for Plant Biochemistry, Academy of Sciences of the GDR, 4010 Halle/Saale, GDR

(Received in Germany 23 February 1982)

Abstract—The synthesis of a series of 1-oxygenated gibberellins starting from GA₃ (1) is described. Nucleophilic addition of hydrazoic acid to 3-dehydro GA₃ (2) was followed by NaBH₄ reduction of the resulting 1-azido-3-ketones 4 and 5 to the corresponding azido alcohols 8–10, and photolysis of the latter compounds to instable 1-imines which were smoothly hydrolysed to the 1-oxo-3-hydroxy gibberellins 13 and 14. Subsequent NaBH₄ reduction led to GA₅₇ (19) and GA₅₅ (20) and their 3-epimers, 17 and 18 respectively. In further steps 1-oxo-GA₅ (21), 1 α - and 1 β -hydroxy-GA₅ (23 and 24), 1-oxo-GA₂₀ (25) as well as 1 α - and 1 β -hydroxy-GA₂₀ (26 and 27) were available. The structures of the synthesized gibberellins were determined by physical data, in regard to the stereochemistry at C-1 and C-3 especially on the basis of ¹H NMR and ORD measurements.

Up till now 59 native gibberellins are known^{3,4}† which have yielded (together with many chemically modified analogues) important informations concerning structureactivity relationships of this class of diterpenoid phytohormones.⁵ Continuing earlier systematic studies in this field,^{6,7} we now report reaction sequences starting from the easily accessible GA₃ (1) and leading to a series of 1-oxygenated⁸ gibberellins among them the scarce hormones GA₅₅ (20) and GA₅₇ (19) as well as 1-oxo and 1-hydroxy GA₅ and GA₂₀ analogues.

First in our reaction pathway for the introduction of an

oxygen function at position 1 was the smooth nucleophilic addition of hydrazoic acid to the Δ '-enone bond of 3-dehydro GA₃ (2), readily available upon oxidation of GA₃ (1) with Attenburrow-MnO₂,⁹ giving a 1:2.8 mixture of both 1-epimeric 1-azido ketones 4 and 5 with azide IR absorption at λ_{max} 2103 and 2132 cm⁻¹ and a typical positive carbonyl cotton effect at 286 nm were obtained which could not be separated because of a strong tendency to re-elimination, giving back 2. The configurational assignment at the newly created asymmetric centre C-1 in the mixture followed from 'H-NMR data. Thus, in the 1α -azido compound 4 the double doublet of the axial C-1 methine proton at (δ) ppm 4.45 (X part of the ABX-system) shows $J_{AX} + J_{BX} = 11$ Hz whereas the corresponding 1β main epimer 5 with an equatorial C-1 methine proton exhibits the expected smaller value $(J_{AX} + J_{BX} = 8 Hz)^{10}$ for the corresponding signal at

449

[†]Note added in proof. In the meantime the gibberellins A_{60} , A_{61} and A_{62} were described, whereas GA_{60} is identical with compound 27 synthesized in this paper. See P. S. Kirkwood and J. MacMillan, J. Chem. Soc. Perkin I 689 (1982).

 (δ) ppm 4.71. Similar the methyl ester 3 reacted to the epimeric azido keto esters 6 and 7 in a 1:1.8 ratio. The crude mixture of 4 and 5 was reduced directly with NaBH₄ leading to the crystalline epimeric azido alcohols 8-10, obtained after chromatographic separation in 24, 23 and 40% yield, respectively. Their configurations at C-1 and 3 were deduced from the chemical shifts and coupling pattern of the 1-, 3- and 5-proton signals in the ¹H-NMR spectra. Thus, in both azido-alcohols 9 and 10 the C-1 methine protons appear as double doublets at (δ) ppm 4.17 and 4.08 with $J_{AX} + J_{BX}$ values of 8 and 7 Hz, respectively, due to equatorial-equatorial and equatorial-axial interactions¹¹ with both protons at C-2. Therefore, 9 and 10 could be regarded as 1β -epimers. On the other hand the 3-methine protons are present as double doublets with the striking different $J_{AX} + J_{BX}$ values of 18 and 7 Hz at (δ) ppm 3.79 and 3.76, respectively, indicating 3α - and 3β -stereochemistry of 9 and 10. Similar typical coupling patterns were found earlier for the 3-epimers GA1 and epi-GA1.12 The different stereochemistry at C-3 effects furthermore dramatically the chemical shift of the C-5 proton.¹³ Thus, in 9 the 5proton doublet appears at 2.69 (J = 10 Hz) whereas the corresponding signal of the 3β -hydroxy epimer 10 is found downfield, shifted to 3.52 by virtue of diaxial deshielding. In agreement with a $1\alpha,3\alpha$ -configuration of the third epimeric azido alcohol 8 for the 1- and 3methine proton signals $J_{AX} + J_{BX} = 15$ and 22 Hz, respectively, are observed and the 5-proton doublet appears high field shifted at (δ) ppm 2.70. The fourth theoretically possible epimer with $1\alpha,3\beta$ -stereochemistry could be detected in the NaBH₄ reduction product of 4+5 only in traces.

In the next step of our reaction sequence the azido group in 8-10 was transformed to an oxo function via azide photolysis. Thus, UV-irradiation ($\lambda = 254$ nm) of the 1 β ,3 β -azido alcohol 10 in THF or CH₂Cl₂ gave under loss of nitrogen the corresponding instable 1-imino compound¹⁴ which underwent smoothly hydrolysis to 1-oxo GA₁ 14. Under similar conditions both 1stereoisomeric 3 α -hydroxy azides 8 and 9 as well as the methyl ester 12 were transformed to 1-oxo-3-epi-GA₁ (13) and its methyl ester 15, respectively. In agreement with the above mentioned NMR assignment for the starting azido alcohols 8-10 at C-3 the 3α -hydroxy ketone 13 exhibits a smaller carbonyl Cotton effect (a = -36) than its 3β -epimer 14 (a = -52) as expected from the octant rule (Fig. 1). Ketone 14 was furthermore characterized by its oxime 16.

NaBH₄ reduction of the 3β -hydroxy ketone 14 afforded in 62% yield a 7:1 ratio of 1α - and 1β hydroxy-GA₁ (19 and 20), isolated from Murofushi *et al.*¹⁵ as the metabolites GA₅₇ and GA₅₅ from the culture broth of Gibberella fujikuroi. In a similar manner from the 3α -hydroxy ketone 13 a 1:1.6 ratio of 3-epi GA₅₇ and 3-epi GA₅₅ (17 and 18) was obtained in 88% yield. In this way all four stereoisomeric 1,3-dihydroxylated gibberellins 17-20 were available as suitable models for structure activity studies. Other synthetic routes to special isomers of this structural type have been published earlier by Adam¹³ as well as Murofushi *et al.*¹⁵

Dehydration of both 3-epimeric hydroxy ketones 13 and 14 with acetic anhydride/pyridine afforded in 68% yield 1-oxo-GA₅ (21) besides small amounts of its 13acetoxy derivative 22. The presence of an enone system was proved by typical UV absorption at $\lambda \max(\epsilon)$ 254 and 350 nm (2540 and 40) as well as 2 doublets (J = 10 Hz) in the NMR spectrum of 21 at 6.04 and 7.14 (δ) ppm for the vinylic protons at C-2 and C-3. Both enones exhibit an extremely large negative Cotton effect (a = -1600) in the $\pi \rightarrow \pi^*$ region of the enone chromophore.

NaBH₄ reduction of the enone 21 afforded 1α - and 1β -hydroxy GA₅ (23 and 24). The chromatographic behavior of both epimers was very similar. Thus, the separation was monitored by NMR (5-H doublets at 2.96 and 3.44, respectively) yielding 33 and 10% of pure 23 and 24. Compound 24 may be regarded as a structural isomer of the highly active phytohormone GA₃ (1) in which the allylic Δ^{1} -3 β -hydroxy function is shifted to the Δ^{2} -1 β -hydroxy position. Thus, the herewith described synthesis of 24 from 1 may be from general interest as a

Fig. 1. Optical rotatory dispersion and octant projection of 1-oxo-3-epi-GA₁ (13, R¹=H, R²=OH), 1-oxo-GA₁ (14, R¹=OH, R²=H) and 1-oxo-GA₂₀ (25, R¹=R²=H).

new method for such a regioselective allylic transposition.

Selective catalytic hydrogenation of the enone 21 with 10% Pd/CaCO₃ in pyridine¹⁶ led to 1-0x0 GA₂₀ (25) with a negative carbonyl Cotton effect at 300 nm (a = -47). In agreement with the octant rule (Fig. 1) the measured molecular amplitude of this parent 1-0x0 gibberellin was found intermediate between the 3α - and 3β -hydroxy-lated ketones 13 and 14. NaBH₄ reduction of 25 gave 1α - and 1β -hydroxy GA₂₀ (26 and 27) obtained upon SiO₂ chromatography (NMR monitoring) in 48 and 28% yield, respectively.

In preliminary studies GA₃₇ (19) and GA₅₅ (20) as well as 1-oxo GA₁ (14) showed about 50% of the parent GA₁ activity in the dwarf rice test. In the dwarf pea test the found values for compounds 19 and 20 are 15% and for 14 35%. From special interest is the high value of 100% GA₁ activity observed for 1 β -azido GA₁ (10) in both test systems.¹⁷ With 2 β -methyl GA₄ and 2,2-dimethyl GA₄ other highly bioactive phytohormone analogues have been published very recently.^{18,19} Shift of the allylic alcohol function to the 3 β -hydroxy- Δ^2 -position (1 \rightarrow 24) effects a dramatically drop to 2 and 4% of the GA₃ bioactivity in the dwarf pea and dwarf maize test, respectively.

EXPERIMENTAL

Mps are corrected. IR: UR-10 instrument (Zeiss, Jena) in nujol. UV and $[\alpha]_D$ in MeOH. ORD: JASCO ORD/UV-5 spectrometer in MeOH. MS: Electron-attachment mass spectrograph of the Research Institute Manfred von Ardenne, Dresden. 'H-NMR: 60 MHz Zeiss instrument ZKR 60, 100 MHz Varian instrument HA 100 or 200 MHz Bruker instrument WP 200 in acetone-d₆ soln (if not otherwise noted) with HMDS as an internal standard, chromatography: Silica gel Woelm for partition chromatography. Photochemical reactions were carried out in a quartz flask under argon at 25-30° using two external Hanovia Reading lamps (each 50 W, $\lambda = 254$ nm).

 1α -Azido-3-dehydro-GA₁ (4) and 1β -azido-3-dehydro-GA₁ (5)

To a soln of 280 mg 2 in 30 ml abs THF was added a soln (5 ml) of HN₃ (from 1 g NaN₃) in 5 ml ether and the mixture was left at room temp for 2 days. After evaporation of the solvent 315 mg of an amorphous 1:2.8 mixture of 4 + 5 was obtained. IR: ν_{max} 908

(C=CH₂), 1703 and 1719 (CO), 1782 (γ-lactone), 2103 and 2132

(azide) and 3408 cm^{-1} (OH). UV (c = 0.937): λ_{max} (ϵ) 286 nm (259). ORD (c = 0.937): [M]₁₂₀ + 4117°, [M]₂₆₈ - 5764°, a = + 99. MS: m/z 344 (M'-HN₃), 326 (344-H₂O), 316 (344-CO), 300 (344-CO₂). NMR (60 MHz): 4.45 (dd, J₁ = 8.5 Hz, J₂ = 2.5 Hz, 1 β -H), 4.71 (δ) ppm (dd, J₁ = 6.5 Hz, J₂ = 1.5 Hz, 1 α -H).

 1α -Azido-3-dehydro-GA₁ methyl ester (6) and 1β -azido-3-dehydro-GA₁ methyl ester (7)

To a soln of 1.074 g 3 in 250 ml CH₂Cl₂ was added a soln (25 ml) of HN₃ (from 3 g NaN₃) in ether and the mixture was left at room temp for 2 days. After evaporation 1.200 g amorphous mixture of 6+7 in 1:1.8 ratio was obtained. IR: ν_{max} 907

(C=CH₂), 1176 (methyl ester C-O), 1723 (CO), 1779 (γ-lactone),

2102 (azide) 3078 ($C=CH_2$) and 3400 cm⁻¹ (OH). UV (c =

0.910): λ_{max} (ϵ) 290 nm (267). ORD (c = 0.910): [M]₃₂₂ + 4835°, [M]₂₅₈ - 5714°, a = + 105.5. MS: m/z 358 (M⁺-HN₃), 340 (358– H₂O), 314 (358–CO₂). NMR (60 MHz): 4.30 (dd, J₁ = 9 Hz, J₂ = 2.5 Hz, 1 β -H), 4.72 (δ) ppm (dd, J₁ = 7 Hz, J₂ = 2 Hz, 1 α -H).

 1α -Azido-3-epi-GA₁ (8), 1β -azido-3-epi-GA₁ (9) and 1β -azido-GA₁ (10)

A mixture of 1.133 g + 5 in 200 ml MeOH was reduced with 550 mg NaBH₄ during 0.5 h under stirring at room temp. After

acidification with 10 ml diluted AcOH (10%) the solvent was removed, the residue solved in 50 ml H₂O and the soln extracted with EtOAc. The collected extracts were washed with H₂O, dried over Na₂SO₄ and concentrated *in vacuo* to give 1.270 g of crude product which was chromatographed on 62 g SiO₂ (30 ml fractions). Elution with benzene/ether 4:6 v/v yielded in the fractions 36-49 509 mg (40%) of 10 with m.p. 239-41°C (dec, acetone/n-hexane) and $[\alpha]_D^{25}$ -62.5° (c = 0.160). IR: ν_{max} 906

()C=CH₂), 1704 (CO), 1762 (γ -lactone), 2113 (azide) and 3453 cm⁻¹ (OH). MS: m/z 389 (M⁻¹), 371 (M⁻¹-H₂O), 361 (M⁻-N₂), 343 (361-H₂O). NMR (100 MHz): 1.07 (s, 18-H₃), 2.56 (d, J = 10 Hz, 6-H), 3.52 (d, J = 10 Hz, 5-H), 3.76 (dd, J₁ = 5 Hz, J₂ = 2 Hz, 3 α -H), 4.08 (dd, J₁ = 5 Hz, J₂ = 2 Hz, 1 α -H), 4.86 and 5.16 (δ) ppm (17-H₂). (Found: C, 58.55; H, 5.93; N, 10.59. C₁₉H₂₃O₆N₃ requires: C, 58.61; H, 5.92; N, 10.80%.)

Elution with benzene/ether 2:8 v/v yielded in the fractions 50-83: 296 mg (23%) amorphous 9 with $[\alpha]_D^{26} - 11.9^{\circ}$ (c = 0.311). IR: ν_{max} 908 (C=CH₂), 1707 (CO), 1763 (γ -lactone), 2102 (azide), 3078 (C=CH₃) and 3420 cm^{×1} (OH). MS: m/z 389 (M⁻),

(a120, 050 (J_{10} = 011) ind 5.12 cm⁻¹ (011) ind 100 mHz (011) ind 100 mHz): 1.11 (s, 18–H₃), 2.55 (d, J = 10 Hz, 6–H), 2.69 (d, J = 10 Hz, 5–H), 3.79 (dd, J₁ = 12 Hz, J₂ = 6 Hz, 3β–H), 4.17 (dd, J₁ = 6 Hz, J₂ = 2 Hz, 1α–H), 4.85 and 5.18 (δ) ppm (17–H₂). (Found: C, 58.47; H, 5.99; N, 10.53. C₁₉H₂₃O₆N₃ requires: C, 58.61; H, 5.92; N, 10.80%.)

Further elution with ether/AcOH 98:2 v/v yielded in the fractions 95-115:306 mg (24%) amorphous 8 with $[\alpha]_{12}^{22} + 45.3^{\circ}$ (c = 0.256). IR ν_{max} 907 (C=CH₂), 1706 (CO), 1762 (γ -lactone), 2101 (azide and 3400 cm⁻¹ (OH). MS: m/z 389 (M⁺), 371 (M⁻ + H₂O), 361 (M⁺-N₂), 348, 343. NMR (100 MHz): 1.09 (s, 18-H₃), 2.44 (d, J = 10 Hz, 6-H), 2.69 (d, J = 10 Hz, 5-H), 3.74 (dd, J₁ = 12 Hz, J₂ = 3 Hz, 1 β -H), 4.80 and 5.18 (δ) ppm (17-H₂). (Found: C, 58.27; H, 6.06; N,

 $10.90. C_{19}H_{23}O_6N_3$ requires : C, 58.61; H, 5.92; N, 10.80%.)

 1β -Azido-3-epi-GA₁-methyl ester (11) and 1β -azido-GA₁-methyl ester (12)

A mixture of 2.41 g 6+7 in 250 ml MeOH was reduced with 1.20 g NaBH₄ during 0.5 h under stirring at room temp. Usual work-up gave 2.42 g of crude product which was chromatographed on 120 g SiO₂ (60 ml fractions). Elution with $CH_2Cl_2/EtOAc$ 95:5 v/v yielded in the fractions 82-102:944 mg (39%) 12 as needles (acetone/n-hexane) with m.p. 193-95° (dec)

and $[\alpha]_D^{23} - 66.9^\circ$ (c = 0.329). IR: ν_{max} 907 (C=CH₂), 1177

(methyl ester C–O), 1657 (>C=CH₂), 1733 (CO), 1758 (γ -lactone),

2118 (azide), 3080 ()C=CH₂), 3420 and 3460 cm $^{\circ1}$ (OH). MS: m/z

402 (M⁺ - 1), 370 (M⁺ - 1-CH₃OH), 359 (M⁺ - 1-HN₃). NMR (100 MHz): 1.06 (s, 18-H₃), 2.60 (d, J = 10 Hz, 6-H), 3.53 (d, J = 10 Hz, 5-H), 3.66 (s, COOCH₃), 3.78 (3 α -H), 4.07 (dd, J₁ = 5 Hz, J₂ = 2 Hz, 1 α -H), 4.83 and 5.14 (δ) ppm (17-H₂). (Found: C, 59.93; H, 6.28; N, 10.35. C₂₀H₂₅O₆N₃ requires: C, 59.55; H, 6.20; N, 10.42%.)

Further elution with CH₂Cl₂/EtOAc 8:2 v/v gave in the fractions 103-146 805 mg (25%) amorphous 11 with $\{\alpha\}_{12}^{12} - 10.2^{\circ}$ (c =

0.304). IR: ν_{max} 906 (C=CH₂), 1174 (methyl ester C-O), 1772

(y-lactone), 2098 (azide), 3073 ($\sum C=CH_2$) and 3420 cm ' (OH).

MS: m/z 403 (M⁺), 371 (M⁺-CH₃OH). NMR (100 MHz): 1.05 (s, 18-H₃), 2.63 (d, J = 10 Hz, 6-H), 2.88 (d, J = 10 Hz, 5-H), 3.71 (s, COOCH₃), 3.90 (3 β -H), 4.21 (dd, J₁ = 5 Hz, J₂ = 2 Hz, 1 α -H), 4.91 and 5.21 (δ) ppm (17-H₂).(Found: C, 59.61; H, 6.38; N, 10.29. C₂₀H₂₅O₆N₃ requires: C, 59.55; H, 6.20; N, 10.42%.)

1-Oxo-3-epi-GA1 (13)

(a) From 1α -azido-3-epi-GA₁ (8). A soln of 80 mg 8 in 40 ml

451

moist THF was irradiated in a quartz flask ($\lambda = 254$ nm). After 7 h 8 was consumed (IR monitoring). The solvent was evaporated and the residue chromatographed on 4 g SiO₂ (2 ml fractions). Elution with ether/AcOH 98:2 v/v yielded in the fractions 108-125:29 mg (40% amorphous 13 with $[\alpha]_{2}^{24} - 25.4^{\circ}$ (c = 0.261). IR:

(b) From 1β -azido-3-epi-GA₁ (9). A soln of 90 mg 9 in 45 ml moist THF was irradiated for 2 h, worked up as usual and the residue chromatographed on 4.5 g SiO₂ (2.5 ml fractions). Elution with ether/AcOH 98:2 v/v gave in the fractions 66-121:38 mg (44%) amorphous 13 with $[\alpha]_{2}^{24} - 26.1^{\circ}$ (c = 0.345), identical in every respect with 13 prepared via method a).

$1 - Oxo - GA_1$ (14)

A soln of 678 mg 10 in 500 ml moist THF was irradiated for 2 h, worked up as usual and the residue chromatographed on 35 g SiO₂ (15 ml fractions). Elution with benzene/ether 1:1 v/v yielded in the fractions 26-46: 142 mg (21%) starting material 10. The fractions 47-140 gave 275 mg (56%) 14 as needles with m.p. 224-227° (acetone/n-hexane) and $[\alpha]_{25}^{25}$ -49.5° (c = 0.323). IR:

 ν_{max} 894 (C=CH₂), 1703 and 1732 (CO), 1758 (γ -lactone),

3069 ($C=CH_2$) and 3490 cm⁻¹ (OH). UV (c = 1.28): λ_{max} (ϵ)

280 nm (115). ORD (c = 1.28): $[M]_{323} - 2680^{\circ}$, $[M]_{272} + 2500^{\circ}$, a = -52. MS: m/z 362 (M⁺), 344 (M⁺-H₂O), 334 (M⁺-CO), 326 (M⁺-2H₂O) and 362 (M⁻), 343, 316 (334-H₂O) and 300 (344-CO₂). NMR (100 MHz): 1.21 (s, 18-H₃), 2.78 (d, J = 10 Hz, 6-H), 2.97 (dd, J₁ = 16 Hz, J₂ = 5.5 Hz, 2-H₂), 3.49 (d, J = 10 Hz, 5-H), 4.08 (dd, J₁ = 5.5 Hz, J₂ = 1.5 Hz, 3 α -H), 4.86 and 5.16 (δ) ppm (17-H₂.)

1-Oxo-GA₁ methyl ester (15)

A soln of 102 mg 12 in 50 ml moist THF was irradiated for 2 h, worked up as usual and the residue chromatographed on 5 g SiO₂ (2.5 ml fractions). Elution with CH₂Cl₂/EtOAc 9:1 v/v gave in the fractions 72–90:43 mg (45%) amorphous 15 with $[\alpha]_{12}^{27} - 48.4^{\circ}$ (c = 0.239). IR: ν_{max} 904 (C=CH₂), 1708 and 1735 (CO), 1782 (y-lactone), 3078 (C=CH₂) and 3490 cm⁻¹ (OH). UV (c = 1.11): λ_{max} (ϵ) 280 nm (88). ORD (c = 1.11): [M]₃₂₅ - 2780°, [M]₂₇₄ + 1930°, a = -47. MS: m/z 376 (M⁺), 358 (M⁺-H₂O), 348 (M⁺-CO), 330 (M⁻-HCOOH), 304 (348–CO₂) and 376 (M⁻), 348 (M⁻-CO), 332 (M⁻-CO₂), 314 (332-H₂O). NMR (60 MH₂): 1.14 (s, 18-H₃), 2.67 (d, J = 10 Hz, 6-H), 2.94 (dd, J₁ = 16 Hz, J₂ = 5.5 Hz, 2-H₂), 3.59 (d, J = 10 Hz, 5-H), 3.76 (s, COOCH₃), 4.18 (dd, J₁ = 5.5 Hz, J₂ = 1.5 Hz, 3\alpha-H), 4.99 and 5.27 (δ) ppm (17-H₂). (Found: C, 63.66; H, 6.22. C₂₀H₂₄O₇ requires: C, 63.83; H, 6.38%.)

1-Oximino-GA1 (16)

To a soln of 38 mg 14 in 0.8 ml abs pyridine 10 mg NH₂OH·HCl was added and left for 26 h at room temp. After evaporation of the solvent *in vacuo* the residue was solved in 10 ml diluted AcOH (10%) and the soln extracted with EtOAc. The residue (40 mg) recovered from the EtOAc was chromatographed on 1.5 g SiO₂ (1 ml fractions). Elution with benzene/ether 3:7 v/v the fractions 35-85 gave 22 mg (55%) 16 which crystallized from benzene/ether in needles with m.p. 194-97° and $[\alpha]_D^{26} - 58.8°$

(c = 0.289). IR: ν_{max} 903 (C=CH₂), 1665 (C=N), 1705 (CO), 1770

(y-lactone) and 3335 cm⁻¹ (OH). UV (c = 1.45): λ_{max} (ϵ) 276 nm (110). MS: m/z 377 (M⁺), 359 (M⁺-H₂O), 333 (M⁺-CO₂) and 315

(M⁺-H₂O-CO₂). NMR (200 MHz): 1.13 (s, 18-H₃), 2.65 (d, J = 10 Hz, 6-H), 3.30 (dd, J₁ = 15 Hz, J₂ = 2.5 Hz, 2-H₂), 3.38 (d, J = 10 Hz, 5-H), 3.91 (dd, J₁ = 6 Hz, J₂ = 2.5 Hz, 3 α -H), 4.85 and 5.15 (δ) ppm (17-H₂).

1α -Hydroxy-3-epi-GA₁ (17) and 1β -hydroxy-3-epi-GA₁ (18)

A soln of 130 mg 13 in 50 ml MeOH was reduced with 100 mg NaBH₄. After 0.5 h the solvent was removed in vacuo, the residue acidified with 15 ml of diluted AcOH (10%) and the soln extracted with EtOAc. The residue recovered from the EtOAc was chromatographed on 7 g SiO₂ (4 ml fractions). With ether/AcOH 98:2 v/v in the fractions 107-143:70 mg (54%) amorphous 18 with $[\alpha]_D^{22} + 26.2^\circ$ (c = 0.350) was eluted. IR: ν_{max} 900 (C=CH₂), 1702 and 1716 (CO), 1754 (γ-lactone) and 3430 cm⁻¹ (OH). MS: m/z 364 (M⁺), 346 (M⁺-H₂O), 330, 328 (M⁺-2H₂O), 312, 302 (M⁺-H₂O-CO₂). NMR (200 MHz, pyridine d_5): 1.72 (s, 18-H₃), 3.34 (d, J = 10 Hz, 6-H), 3.94 (d, J = 10 Hz, 5-H), 4.43 (d, J = 3.5 Hz, 1α -H), 4.44 (m, 3β -H), 4.93 and 5.54 (δ) ppm (17-H₂), lit¹³: m.p. 150-53° (dec, from acetone/n-hexane), $[\alpha]_D^{25} + 21.0^\circ$. (Found: C, 62.44; H, 6.83. C₁₉H₂₄O₇ requires: C, 62.64; H, 6.59%). Further elution with ether/AcOH 95:5 v/v gave in the fractions 189-256 44 mg (34%) amorphous 17 with $[\alpha]_D^{23}$ + 4.9° (c = 0.351). IR: ν_{max} 902 (C=CH₂), 1716 and 1738 (CO), 1750 (y-lactone) and 3400 cm⁻¹ (OH). MS: m/z 364 (M⁺), 346

1750 (γ -lactone) and 3400 cm⁻¹ (OH). MS: m/z 364 (M⁺), 346 (M⁺-H₂O), 328 (M⁺-2H₂O), 320 (M⁺-CO₂), 302 (M⁺-H₂O-CO₂). NMR (200 MHz, pyridine-d₅): 1.67 (s, 18-H₃), 3.06 (d, J = 10 Hz, 6-H), 3.33 (d, J = 10 Hz, 5-H), 4.21 (m, 1 β - and 3 β -H), 4.84 and 5.46 (δ)ppm (17-H₂), Lit.¹⁵ m.p. 174-77°. (Found: C, 62.61; H, 6.81. C₁₉H₂₄O₇ requires: C, 62.64; H, 6.59%.)

GA57 (1a-hydroxy-GA1, 19) and GA55 (1β-hydroxy-GA1, 20)

A soln of 270 mg 14 in 60 ml MeOH was reduced with 200 mg NaBH₄. After 0.5 h worked up as usual and crude product (250 mg) chromatographed on 15 mg SiO₂ (7 ml fractions). Elution with ether/AcOH 98:2 v/v yielded in the fractions 97-116 21 mg (8%) 20 with m.p. 260-263° (MeOH/ether) and $[\alpha]_2^{24} + 38.6°$ (c =

0.285). IR: ν_{max} 910 and 1665 (C=CH₂), 1706 and 1740 (CO),

1770 (γ -lactone) and 3440 cm⁻¹ (OH). MS: m/z 364 (M⁺), 346 (M⁺-H₂O), 328 (M⁺-2H₂O), 320 (M⁺-CO₂), 300 (328-CO), 284 (328-CO₂) and 362 (M⁻-2), 344 (362-H₂O), 320 (M⁻-CO₂), 318 (362-CO₂), 300 (318-H₂O). NMR (200 MHz, pyridine-d₃): 1.64 (s, 18-H₃), 2.81 (m, 2-H₂), 3.27 (d, J = 10 Hz, 6-H), 4.17 (d, J = 3.5 Hz, 3\alpha-H), 4.37 (d, J = 3.5 Hz, 1\alpha-H), 4.54 (d, J = 10 Hz, 5-H), 4.92 and 5.54 (δ) ppm (17-H₂), lit¹⁵: m.p. 245-47° (dec, acetone/n-hexane), $[\alpha]_{12}^{22} + 41.0°$ (c = 0.275, lit¹⁵ amorphous, the NMR data given there are in agreement with our values.

Further elution with ether/AcOH 95:5 v/v gave in the fractions 121-196 140 mg (54%) 19 with m.p. 147-50° (MeOH/ether) and $[\alpha]_{2}^{24}$ + 19.2° (c = 0.365). IR: ν_{max} 900 (C=CH₂), 1703 and 1716 (CO), 1760 (γ -lactone) and 3400 cm⁻¹ (OH). MS: m/z 364 (M⁺), 346 (M⁺-H₂O), 328 (M⁺-2H₂O), 320 (M⁺-CO₂), 319, 302 (M⁺-H₂O-CO₂), 300 (346-HCOOH), 290. NMR (200 MHz, pyridine-d₃): 1.58 (s, 18-H₃), 3.20 (d, J = 10 Hz, 6-H), 3.94 (d, J = 10 Hz, 5-H), 4.15 (t, J = 4 Hz, 3\alpha-H), 4.60 (dd, J₁ = 10 Hz, J₂ = 6 Hz, 1β-H), 4.93 and 5.53 (δ) ppm (17-H₂), lit¹⁵ amorphous; the NMR data given¹⁵ are in agreement with our values.

1-Oxo-GA₅ (21) and 13-acetoxy-1-oxo-GA₅ (22)

To a soln of 260 mg 14 in 3 ml abs pyridine, 3 ml Ac₂O was added and kept for 1.5 h at room temp. After evaporation of the solvent *in vacuo* the residue was chromatographed on 15 g SiO₂ (7 ml fractions). Elution with benzene/ether 6:4 v/v gave in the fractions 32 and 33:24 mg (9%) amorphous 22 with $\{\alpha\}_{D}^{21} - 66.5^{\circ}$ (c = 0.316). IR: ν_{max} 902 and 1660 (C=CH₂), 1703 and 1735 (CO), 1780 cm⁻¹ (γ -lactone). UV (c = 0.813): λ_{max} (ϵ) 350 and 254 nm (31 and 2764). ORD (c = 0.813): $[M]_{270} - 35740^{\circ}$, $[M]_{229} + 124,000^{\circ}$, a = -1600. MS: *m*/*z* 386 (M⁺), 344 (M⁺-CH₂CO⁻), 326 (344-H₂O), 300 (344-CO₂) and 385 (M⁻-1), 342 (385-CH₃CO), 327, 298 (342-CO₂). NMR (100 MHz): 1.31 (s, 18-H₃), 2.79 (d,

J = 10 Hz, 6–H), 3.45 (d, J = 10 Hz, 5–H), 4.93 and 5.12 (17–H₂), 6.04 (d, J = 10 Hz, 2-H), and 7.14 (δ) ppm (d, J = 10 Hz, 3-H).

Further elution with benzene/ether 1:1 and 4:6 v/v yielded in the fractions 38-90 170 mg (68%) 21 which crystallized from acetone/n-hexane as needles with m.p. 206-210° (dec) and $[\alpha]_D^{22}$ -

58.7° (c = 0.375). IR:
$$\nu_{max}$$
 903 and 1665 (C=CH₂), 1702 and 1736

(CO), 1780 cm⁻¹ (γ -lactone). UV (c = 0.690): λ_{max} (ϵ) 350 and 254 nm (40 and 2543). ORD (c = 0.690): [M]₂₆₈-44870°, [M]₂₂₉+ 119650°, a = -1645. MS: m/z 344 (M⁺), 326 (M⁺-H₂O), 316 (M⁻-CO), 300 (M⁺-CO₂) and 343 (M⁻-1), 329, 300 (M⁻-CO₂), 282 (M⁻-CO₂-H₂O), 256 (M⁻-2CO₂). NMR (100 MHz): 1.30 (s, 18-H₃), 2.74 (d, J = 10 Hz, 6-H), 3.41 (d, J = 10 Hz, 5-H), 4.84 and 5.18 (17-H₂), 6.04 (d, J = 10 Hz, 2-H) and 7.12 (δ) ppm (d, J = 10 Hz, (3-H).

21 was also obtained in the same manner by dehydration of a mixture of 13 + 14.

1α -Hydroxy-GA₅ (23) and 1β -hydroxy-GA₅ (24)

A soln of 270 mg 21 in 50 ml MeOH was reduced with 200 mg NaBH₄ for 0.5 h. After usual work up gave a residue which was chromatographed on 16 g SiO₂ (8 ml fractions). Elution with benzene/ether 3:7 v/v yielded in the fractions 162-259:28 mg (10%) 24 which crystallized from acetone/n-hexane in needles with m.p. 152–155° (dec) and $[\alpha]_D^{24}$ – 62.2° (c = 0.225). IR: ν_{max} 906

and 1654 (C=CH₂), 1700 (CO), 1755 (y-lactone), 3035 (-

CH=CH-), 3089 (C=CH₂) and 3390 cm⁻¹ (OH). MS: m/z 346

 (M^+) , 328 (M^+-H_2O) , 312, 310 (M^+-2H_2O) , 302 (M^+-CO_2) , 284 (302-H2O) and 345 (M⁻-1), 344 (M⁻-2), 300 (344-CH2). NMR $(200 \text{ MHz}, \text{ pyridine-d}_5)$: 1.30 (s, 18-H₃), 2.97 (d, J = 10 Hz, 6-H), 3.44 (d, J = 10 Hz, 5-H), 4.38 (d, J = 3 Hz, 1α -H), 4.85 and 5.49 $(17-H_2)$, 5.82 (d, J = 9 Hz, 2-H) and 6.10 (δ) ppm (dd, J₁ = 9 Hz, $J_2 = 3 Hz$, 3-H). (Found: C, 65.61; H, 6.15. $C_{19}H_{22}O_6$ requires: C, 65.90; H, 6.36%.)

Further elution with ether as well as ether/AcOH 98:2 v/v afforded in the fractions 276-334:91 mg (33%) 23 which crystallized from acetone/n-hexane in needles with m.p. 141-144° (dec)

and $[\alpha]_D^{25} - 35.6^\circ$ (C = 0.278). IR: ν_{max} 906 and 1652 (C=CH₂),

($C=CH_2$) and 3390 cm⁻¹ (OH). MS: m/z 346 (M⁺), 328 (M⁺-

H2O), 310 (M⁺-2H2O), 302 (M⁺-CO2), 284 (302-H2O), respectively, 345 (M^{-} -1), 303 (345-CH₂CO), 290. NMR (200 MHz, pyridine-d₅): 1 28 (s, 18-H₃), 2.84 (d, J = 10 Hz, 6-H), 2.96 (d J = 10 Hz, 5-H), 4.21 (d, J = 3 Hz, 1 β -H), 4.67 and 4.92 (17-H₂), 5.82 (d, J = 9 Hz, 2-H) and 5.96 (δ) ppm (dd, $J_1 = 9 Hz$, $J_2 = 3 Hz$, 3-H). (Found: C, 65.92; H, 6.30. C19H22O6 requires: C, 65.90; H, 6.36%.)

1-Oxo-GA20 (25)

A Pd catalyst was prepared by hydrogenation of 10 mg Pd (OH)₂/CaCO₃ (10%) in 3 ml abs pyridine, a soln of 60 mg 21 in 3 ml abs pyridine was added and the hydrogenation continued until one equivalent of H2 was taken up. After filtration the solvent was evaporated and the residue chromatographed on 3 g SiO₂ (1.5 ml fractions). Elution with benzene/ether 1:1 v/v afforded in the fractions 36 87:36 mg (59%) 25 which crystallized from acetone/n-hexane in fine needles with m.p. 122-125° and $[\alpha]_D^{25} - 39.3^\circ$ (c = 0.280). IR: ν_{max} 900 (C=CH₂), 1722 and 1734

(CO), 1773 (γ -lactone), 3070 ($\sum C=CH_2$) and 3350 cm⁻¹ (OH). UV

(c = 1.62): λ_{max} (ϵ) 290 nm (56). ORD (c = 1.62): [M]₃₂₄ - 2480°, $[M]_{276} + 2220^{\circ}, a = -47. MS: m/z 346 (M^+), 328 (M^+ - H_2O), 318$ (M⁺-CO), 304 (M⁺-CH₂CO⁻), 302 (M⁺-CO₂) and 346 (M⁻), 302 (M -CO₂), 300 (M⁻-HCOOH). NMR (200 MHz): 1.20 (s, 18-H₃), 2.83 (d, J = 10 Hz, 6–H), 2.98 (d, J = 10 Hz, 5–H), 4.90 and 5.22 (δ) ppm (17-H₂). Hydrogenation of 21 in THF/pyridine gave the same product in 63% yield.

 1α -Hydroxy-GA₂₀ (26) and 1β -hydroxy-GA₂₀ (27)

A soln of 150 mg 25 in 30 ml MeOH was reduced with 150 mg NaBH₄ for 1 h. After usual work up the residue was chromatographed on 7.5 g SiO₂ (4 ml fractions). Elution with benzene/ether1:1 v/v yielded in the fractions 112-151 21 mg (14%) 27 which crystallized from acetone/n-hexane in fine needles with m.p. 253-255° (dec) and $[\alpha]_D^{26} + 6.3°$ (c = 0.270). IR $\nu_{\rm max}$ 904 and 1655 (C=CH₂), 1722 and 1734 (CO), 1760 (γ lactone), 3072 ($C=CH_2$) and 3280 cm⁻¹ (OH). MS: m/z 348 (M^+) , 330 (M^+-H_2O) , 303, 289 and 347 (M^--1) , 330 (M^--H_2O) , 302 (M⁻-HCOOH), 284 (302-H₂O). NMR (200 MHz): 1.04 (s, $18-H_3$), 2.61 (d, J = 10 Hz, 6-H), 3.11 (d, J = 10 Hz, 5-H), 3.96 (t, J = 3 Hz, 1 α -H), 4.87 and 5.19 (δ) ppm (17-H₂). Further elution with benzene/ether H 1:9 v/v afforded in the

fractions 152-173:36 mg (24%) 26 which crystallized from acetone/n-hexane in fine needles with m.p. 228-232° (dec) and

 $[\alpha]_D^{26} + 4.8^\circ$ (c = 0.415). IR: ν_{max} 906 (C=CH₂), 1704 and 1718 (CO), 1773 (γ -lactone) and 3365 cm⁻¹ (OH). MS: m/z 348 (M⁺),

330 (M⁻-H₂O), 312 (M⁻-2H₂O), 289 and 347 (M⁻-1), 330 (M⁻-H2O), 302 (M⁻-HCOOH), 284 (302-H2O). NMR (200 MHz): 1.02 $(s, 18-H_3), 2.54 (d, J = 10 Hz, 6-H), 2.63 (d, J = 10 Hz, 5-H), 3.87$ (dd, $J_1 = 10 \text{ Hz}$, $J_2 = 3 \text{ Hz}$, 1β -H), 4.85 and 5.20 (δ) ppm (17-H₂).

Acknowledgements-We are indebted to Dr. A. Preiss for NMR measurements, Dr. D. Voigt for the mass spectra, Dr. Chr. Bergner for bioassays and Miss U. Hof for technical assistance.

REFERENCES

'Part LXXXVIII: see Ref. 7; Photochemical Reactions-XXXVI; Part XXXV see L. Kutschabsky, G. Reck, E. Höhne, B. Voigt and G. Adam, Tetrahedron 36, 3421 (1980).

- ²Presented in part at the 1st Int. Conf. on Chemistry and Biotechnology of Biologically Active Natural Products, 21 to 26 Sept., 1981 at Varna; see, B. Voigt and G. Adam, Symp. Abstr. 3(2), 13.
- ³J. R. Bearder, in Encyclopaedia of Plant Physiology, New Series Vol. 9, Hormonal Regulation of Development I, Molecular Aspects of Plant Hormones (Edited by J. MacMillan), p. 9. Springer-Verlag, Heidelberg (1980).
- ⁴T. Yokota and T. Takahashi, J. Agric. Biol. Chem. 45, 1251 (1981).
- ⁵See, P. Hedden in *Plant Growth Substances* (Edited by N. B. Mandava), p. 19. NCS Symp. Series 111, Washington (1979).
- ⁶M. Lischewski and G. Adam, Tetrahedron 36, 1237 (1980).
- ⁷Chr. Bergner, M. Lischewski, G. Sembdner and G. Adam, Planta 155, 231 (1982).
- ⁸For numbering of the gibberellane skeleton see, J. W. Rowe, The Common and Systematic Nomenclature of Cyclic Diterpenes, 3rd. Rev., Forest Product Laboratory, U.S. Dept. of Agriculture, Madison, Wisconsin, p. 42.
- "N. S. Kobrina, E. P. Serebryakov, V. F. Kucherov, G. Adam and B. Voigt, Tetrahedron 29, 3425 (1973) and refs. therein.
- ¹⁰See, E. P. Serebryakov, N. S. Kobrina, V. F. Kucherov, G. Adam and K. Schreiber, Ibid. 28, 3813 (1972).
- ¹¹N. S. Bhacca and D. H. Williams, Applications of NMR Spectroscopy in Organic Chemistry, p. 47. Holden-Day, San Francisco (1964).
- ¹²G. Adam and T. V. Sung, Tetrahedron 34, 717 (1978).
- "G. Adam and Ph. D. Hung, Tetrahedron Letters 3419 (1974).
- ¹⁴For photolysis of other azides to imines see, Methodicum Chimicum, Vol. 6, p. 323. Thieme, Stuttgart/Academic Press, New York (1974).
- ^{15a}N. Murofushi, M. Sugimoto, K. Itoh and N. Takahashi, Agric. Biol. Chem. 44, 1583 (1980); b Ibid. 43, 2179 (1979).
- ¹⁶N. Tsuji, J. Suzuki and M. Shiota, J. Org. Chem. 45, 13 (1980).
- ¹⁷Chr. Bergner, B. Voigt, G. Sembdner and G. Adam, in preparation.
- ¹⁸M. H. Beale and J. MacMillan, Phytochemistry 20, 693 (1981).
- ¹⁹G. V. Hoad, B. O. Phinney, V. M. Sponsel and J. MacMillan, Ibid. 20, 703 (1981).